skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nimmagadda, Lakshmi Amulya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Topological surface states (TSSs) coexist with a rapidly formed two-dimensional electron gas (2DEG) at the surface of Bi 2 Se 3 . While this complex band structure has been widely studied for its interactions between the two states in terms of electrical conductivity and carrier density, the resulting thermopower has not been investigated as thoroughly. Here, we report measurements of the temperature dependent Seebeck coefficient ( S) and electrical conductivity ( σ) on an undoped 10 nm thin Bi 2 Se 3 film over the temperature range of 100–300 K to find an overall metal-like behavior. The measured S is consistent with the theory when assuming that both the TSS and the 2DEG contribute to thermoelectric transport. Our analysis further shows that the coefficient corresponds to a Fermi level situated well above the conduction band minima of the 2DEG, resulting in comparable contributions from the TSS and the 2DEG. The thermoelectric power factor ( S 2 σ) at 300 K increases by 10%–30% over the bulk. This work provides insights into understanding and enhancing thermoelectric phenomena in topological insulators. 
    more » « less